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Abstract

Studies in classifying affect from vocal cues have produced exceptional within-corpus results, 

especially for arousal (activation or stress); yet cross-corpora affect recognition has only recently 

garnered attention. An essential requirement of many behavioral studies is affect scoring that 

generalizes across different social contexts and data conditions. We present a robust, unsupervised 

(rule-based) method for providing a scale-continuous, bounded arousal rating operating on the 

vocal signal. The method incorporates just three knowledge-inspired features chosen based on 

empirical and theoretical evidence. It constructs a speaker’s baseline model for each feature 

separately, and then computes single-feature arousal scores. Lastly, it advantageously fuses the 

single-feature arousal scores into a final rating without knowledge of the true affect. The baseline 

data is preferably labeled as neutral, but some initial evidence is provided to suggest that no 

labeled data is required in certain cases. The proposed method is compared to a state-of-the-art 

supervised technique which employs a high-dimensional feature set. The proposed framework 

achieves highly-competitive performance with additional benefits. The measure is interpretable, 

scale-continuous as opposed to discrete, and can operate without any affective labeling. An 

accompanying Matlab tool is made available with the paper.

Index Terms

Arousal; activation; rule-based rating; knowledge-inspired features; cross-corpora classification; 
continuous affect tracking

1 Introduction

Emotion is at the core of human behavior, influencing our decisions both consciously and 

unconsciously. A primary case is communication, which is the process of exchanging 

information between sender and receiver to achieve a “commonness” of interpretation [1]. 
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Human communication is an intricate process in which the participants are constantly 

transmitting information through verbal and non-verbal (vocal, visual, gestural) cues, even 

when not the active speaker. During many interactions, the participants will display overt 

affective signals that are invaluable to moderating the tone of the exchange. As examples, 

consider the importance of affective cues for: an employee negotiating a raise in salary with 

an employer; teasing amongst friends while being cognizant of taking it too far; a spouse 

who wants to know when it is imperative to act on their partner’s requests. In all of these 

cases, accurate interpretation of a person’s tone of voice or facial expression may keep a 

positive rapport or help achieve a desired outcome.

Affective phenomena, especially arousal, inspire scholarly interest in many disciplines for 

diverse purposes. These disciplines include psychology and sociology, biology, engineering, 

linguistics, and even consumer research. For instance, human behavior studies in adults have 

investigated concepts such as interpersonal intimacy (e.g., interpersonal distance, eye 

contact, and touch); one model proposes that one person’s acts of intimacy predict an 

arousal change in the other person [2]. Other work has linked activation (also referred to as 

arousal) to differences in task performance; thus activation is considered a measure of 

personal motivation [3]. Affect study in children is also of significant interest [4]; for 

example, one experiment investigated the arousal of infants in relation to depression in their 

mothers [5]. Furthermore, receptive and expressive emotional processing are critical to the 

understanding of the prevalent neurodevelopmental social disorder autism; studies have 

examined non-verbal communicative performance [6] and emotional responses in the brain 

[7]. It is apparent that applications of affective computing technologies are abundant.

Humans can judge affective content from voice at accuracies well-above chance, and speech 

processing techniques can do so as well. However, a common finding among speech 

acoustic studies is that non-specific vocal arousal is identified more effectively than 

pleasantness (valence) [8]; this is also shown empirically in cross-corpora classification 

studies [9], [10]. Therefore, we suggest that vocal arousal is an area primed for creating 

general-use tools.

Pollerman (2002) has posited that prosody is an essential mechanism for investigating 

cognition and emotion [11]. In many cases prosodic correlates of arousal are used as variates 

for analyzing human behavior. Given the importance of arousal, it also is understandable 

that researchers need various (sometimes simultaneous) measures. However, there is an 

absence of available validated tools for measuring arousal from voice. This is the primary 

motivation for this work and for the accompanying vocal arousal rating tool. In this section 

we describe standard arousal measures in behavioral science research, the state of affective 

classification, the necessity of a convergence between disciplines, and the study goals and 

design.

1.1 Affect in Behavior Sciences

A person’s internal affective state can be measured through various methods, both 

qualitative and objective. Many times researchers must rely on a qualitative measure such as 

patient self-report. For example, the Positive and Negative Affect Scale (PANAS) is a 

prevalent 10-item questionnaire that produces varimax rotations of arousal and pleasantness 
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(valence) [12]. Another popular self-report measure is the behavioral inhibition scale (BIS) 

or behavioral activation (BAS) scales [13]. Objective measures do not rely on rater bias, 

although they can be influenced by other factors. Objective measures of autonomic arousal 

include heart rate, electrodermal activity (EDA), and pupil diameter. For instance, pupil 

diameter has been linked to emotional arousal associated with increased sympathetic activity 

[14]. But another overt behavioral signal is available “for free” in many datasets.

Researchers are increasingly utilizing the human voice as a non-invasive measure of 

expressed arousal. Audio is available in many situations where other objective measures are 

not an option. Audio can even be useful in situations where the collected data were not 

originally intended for arousal research. Furthermore, a researcher may be interested in 

having multiple measures of arousal for increased reliability or to study relationships 

between different arousal constructs. For instance, certain vocal cues can be modified such 

that they do not reflect the speaker’s true internal state in order to persuade or dissuade a 

listener [8]; having separate measures of overt and covert affect could potentially reveal this. 

But currently the availability of arousal rating tools is limited to non-existent. Many 

behavioral studies currently rely on an individual prosodic feature as the sole measure of 

expressed arousal. For example, pitch has been used to investigate outcomes of depressed 

patient interventions [15] and to produce a visual depiction of arousal for negotiators [16].

It is intuitive that expressed vocal arousal will modulate more than a single quantified 

feature, and thus this will be a sub-optimal arousal tracker. An individual feature may not 

have consistent meaning in different social contexts or audio settings, but the inclusion of 

more features in a vocal arousal measure could provide robustness. For example, 

Pollermann (2002) created a vocal arousal measure by combining z-normalized vocal pitch, 

intensity, and speaking rate (SR) for use in two interesting pilot studies [11]; one study 

compared autonomic arousal in patients with autonomic lesions to the patients’ expressed 

(vocal) arousal, while another distinguished the adaptive coping abilities of patients with 

breast cancer based on their vocal arousal. In general, this feature combination strategy has 

not been fully validated for effectiveness in capturing arousal. Producing a validated 

measure of vocal arousal is a capability of affective computing.

1.2 Affective Computing and Vocal Arousal

There is an impressive history in engineering of investigating affect from voice [17], [18], 

[19], [20], [21]. Engineers have primarily investigated emotion for its utility in systems 

applications. Affective computing has shown potential for the development of intelligent 

human-machine interfaces [20] and for improving core speech technologies like speech 

recognition and speaker identification [22]. However, due to limitations in available data 

and the relative infancy of the field, much of the research has focused on maximizing 

predictive performance within a single dataset (e.g., the Speech Under Simulated and Actual 

Stress database [23]). The success of affect recognition is highly-dependent on the 

characteristic of a specific corpora and the applied computational techniques. 

Correspondingly, there has been little agreement on the features that are predictive of 

affective constructs.
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Consequently, cross-corpus robustness of emotion recognition is gaining interest. This 

approach aims to build a system that is capable of handling diverse acoustic settings and 

speaker traits (e.g., gender and age), while maintaining high performance. Eyben et al. [24] 

and Schuller et al. [9] have pursued cross-corpora dimensional emotion classification. The 

authors developed systems that did not require any data for corpus-adaptation (i.e., corpus or 

speaker normalization), achieving above-chance accuracies (≈60%). Still, the accuracies 

were lower than desired for many applications and Eyben et al. (2010) noted the need for 

methodology to mature. One approach to improving results is speaker- or corpus-

normalization, in order to adapt the system to new attributes. Schuller et al. (2010) achieved 

much higher accuracies across corpora through speaker normalization [10]. Such efforts in 

robust emotion recognition may be applicable not only in engineering systems, but in 

creating affective ratings for behavioral studies.

1.3 An Opportunity for Convergence

Human behavior researchers are in need of robust measures of affective constructs that are 

transferrable across corpora; this is a great opportunity for engineers to employ 

methodologies to create simple veritable measures of emotion. More specifically, engineers 

need to first consider the goals of an application domain, and then design the required 

system. In our case, engineering can provide an arousal rating tool which: incorporates more 

features than the standard mean pitch used by many psychologists as a measure of arousal; 

generalizes well (possibly better than high-dimensional feature vectors that are susceptible 

to over-fitting); does not require labeled training data; maintains interpretability; and is 

simple to use.

More detailed points reflecting our views for this convergence follow. First, it is 

understandable that mean pitch may be insufficient as a measure of vocal arousal, since a 

speaker may display emotions through other cues and modalities. Juslin & Scherer (2005) 

state that interactions between features may reflect combinations of measures more closely 

related to human perception; for instance, ‘vocal effort’ may be a combination of acoustic 

features such as vocal intensity and high-frequency energy [25]. Thus, integrating multiple 

variables can lead to better modeling and potentially increased robustness. Yet, pitch as a 

measure of vocal arousal has the benefit of maintaining interpretability of the model.

Second, engineers must create algorithms that generalize well, but also accommodate the 

constraints of the target domain. A supervised approach has many challenges. For instance, 

data in the suggested application domains will often not contain any associated labeled data 

that would be useful for model adaptation. Also, since emotion classification from speech is 

strongly influenced by phonetic structure [26], a supervised system risks being dependent on 

the phonetic structure of the data on which it was trained. In our specific case, we find that 

providing computational robustness to the models similar to those already employed in 

psychology is a suitable approach. Lastly, fundamental signal processing techniques like 

speaker normalization can benefit cross-corpus affect modeling; such techniques are not 

universally applied in behavioral research, even when necessary. In our preliminary work, 

we developed an arousal rating framework that addresses the previously stated objectives of 

accuracy, robustness, and interpretability [27].
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1.4 Study Goals and Design

In this work, we aim to develop and validate an engineering framework for vocal arousal 

rating that adheres to the constraints of the target domain, behavioral science. Our proposed 

system is simple, incorporating only three acoustic features and not requiring labeled 

emotional training data. Our system is also robust, achieving high correlation and 

classification accuracy in diverse scenarios; we evaluate multiple languages (German and 

English), emotional contexts (scripted and read), and emotional styles (acted and natural). 

This framework is also generally-applicable if known, robust correlates of a target variable 

exist.

A brief overview of our unsupervised (rule-based), knowledge-inspired system follows. The 

chosen features are knowledge-inspired, based on the survey article by Juslin & Scherer 

(2005) which defines acoustic correlates of vocal arousal that have consistently predictable 

behavior across many empirical studies [25]. Moreover, these empirical results are also 

predicted by anatomical models of affective speech production; e.g., pitch is expected to 

increase when stress or arousal causes the muscles in the larynx to tighten. In this work, we 

investigate an array of features indicated by perception and production evidence. Our final 

selected feature set contains median log-pitch, median intensity, and HF500 (similar to 

spectral slope); this is identical to the feature set selected by intuition and feature extraction 

constraints in our previous work [27]. This small, interpretable feature set can be robustly 

extracted and leads to coherent results across corpora.

With our chosen feature set, we obtain an soft-rating of arousal for each feature. We do not 

assume a Gaussian distribution of a speaker’s features as in our previous work [27], but use 

the exact values of the baseline data as an estimate of the distribution. The only requirement 

of the algorithm is that neutral data is available to define a speaker’s neutral feature range 

(since it is well-known that a speaker’s features are idiosyncratic [8]); however, we will 

demonstrate the algorithm’s utility even if no such labeled neutral data is available. Finally, 

the soft-ratings from each feature are combined through weighted summation using a 

method that does not rely on labeled training data, but the relation between soft-ratings for a 

given speaker and corpus [28]. This provides demonstrated robustness when one feature is 

corrupted. In this work, we additionally compare our system to a supervised baseline and 

explore temporally-continuous arousal ratings that do not rely on utterance boundaries.

We describe the system as unsupervised since feature weights (model parameters) are not 

adjusted such that the system output matches the labels in a set of training data, as with 

supervised approaches. As such, we do not perform cross-corpora classification in which 

we train model parameters on one or more databases and test the model on a unique 

database; instead, we perform cross-corpora evaluation of our rule-based system. The 

system essentially performs a type of speaker-normalization using the speaker-baseline 

model, but this requirement is of little consequence since supervised cross-corpora 

approaches have had little success without speaker normalization.

In the Methods section, we detail the emotional corpora and our proposed arousal rating 

framework. In the next section, we detail our results and the corresponding experimental 

setup; this includes validation of our approach across multiple corpora, testing of other 
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potential features such as speech rate, and evaluation of alternative supervised techniques 

with state-of-the-art features and various adaptation strategies. In the remaining sections we 

discuss results and potential applications of this arousal rating tool, and then conclude.

2 Methods

Our experiments are conducted with five emotional databases comprising acted and natural 

German and English speech with dimensional and categorical arousal labels. The databases 

(detailed in Table 1) are: IEMOCAP, emoDB, EMA, VAM, and CreativeIT. The first four 

are publicly available presently. CreativeIT includes temporally-continuous arousal ratings.

2.1 Databases

2.1.1 Acted Emotional Speech Corpora—IEMOCAP consists of mixed-gender dyadic 

interaction between actors speaking in English, along with associated categorical and 

dimensional emotional labeling [29]. Five dyads interact in both spontaneous improvisation 

of hypothetical emotional scenarios (2,388 turns) and portrayal of scripted emotional content 

(4,517 turns). At least two raters rate every turn. Our analyses concentrate on the 

dimensional arousal rating, which is a five-pt scale. Neutral turns were defined by the 

categorical label “neutral”. The data initially contains 10,039 turns. A turn was excluded if 

speech was overlapped by another speaker or there was significant background noise (3,134 

turns). In addition, some utterances had no voiced frames identified by Praat (<1%), and 

were discarded. We include the data for which no agreement was made regarding 

categorical emotion (28 percent).

The USC-EMA corpus consists of read, emotional speech from three trained actors 

performing five emotions in English—neutral, hot anger, cold anger, happy, and sad. Four 

raters labeled the categorical emotion of each utterance. Categorical labels of hot anger and 

happy are denoted as high arousal in our study, while sadness and cold anger are designated 

low arousal. The speech was intentionally modulated with different speaking styles: normal, 

loud, and fast; these variations may affect arousal perception, especially as attributed to 

energy and speech rate. The speakers articulation may also be somewhat hindered by the 

sensors placed on the face and tongue for the purpose of studying affective articulation with 

electromagnetic articulography [30], [31].

emoDB is comprised of acted (read) German speech. Seven emotions are expressed: neutral 

(neutral arousal); happy, angry, and fearful (high arousal); and sad, bored, and disgusted 

(low arousal). The acoustic intensity is unreliable due to varying mouth-to-mic distance 

[32]; thus, a system that places heavy weight on vocal intensity would fail. We will evaluate 

our score-fusion scheme in later sections for the task of addressing this corrupted feature.

Our fourth acted emotional corpus is CreativeIT, which incorporates the Active Analysis 

improvisation technique to encourage goal-oriented affective interactions [33]. Time-

continuous (downsampled to 100 Hz) and scale-continuous (in the range [−1, 1]) arousal 

annotations were made by two or more raters; the ratings were variance-normalized and 

averaged. The processed-data we incorporate contains 16 actors who participated in 45 

dyadic interactions; thus, we have 90 total tokens for temporally-continuous analysis of 
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objective vocal arousal in relation to subjective perceived arousal. Since the absolute value 

of the ratings isn’t necessarily important, we do not require neutral labels in this database 

and opt for all-data normalization (Section 2.4).

2.1.2 Natural Emotional Speech Corpus—The VAM corpus [34] consists of speakers 

in dyadic or triadic conversations on the German TV talk-show “Vera am Mittag”, or Vera 

at Noon. The data is spontaneous and considered natural, although the naturalness of talk-

show speech is debatable. Forty-seven speakers account for a total of 947 utterances. Some 

of the speakers speak less than 10 utterances and are disregarded from these analyses; 36 

speakers and 870 utterances are investigated. The utterances are labeled for arousal (also 

valence and dominance) on a continuous scale by 7 to 16 raters. Since no explicit neutral tag 

is given for the data, we select up to four utterances that have closest to 0-rated arousal for 

baseline modeling.

2.2 Knowledge-Inspired Features

The foremost principle in the design of our rule-based system is that certain features display 

predictable trends across many contexts. As mentioned previously, mean-pitch is commonly 

taken as a measure of vocal arousal, since robust cross-corpora arousal rating systems are 

not yet freely-available. In order to construct a robust arousal rating system, we incorporate 

solely features that are indicated through both perception and production research. These 

features are consistently predictive of perceived arousal in many empirical experiments, 

neatly summarized by Juslin & Scherer (2005, in Table 3.2). The empirical results are not 

surprising, as the feature trends can also be predicted by both discrete emotion theories and 

component process theory [25]. For instance, fear (high arousal) causes the laryngeal folds 

to tighten as a sympathetic response, leading to higher pitch [35].

Our review indicates that five features are regularly reported to be affected by increased 

arousal: pitch (mean and variance increase); vocal intensity (mean and variance increase); 

HF500, a voice quality measure which is the ratio of high-frequency to low-frequency 

energy with a 500 Hz cutoff (increases); speaking rate (increases); and jitter, a measure of 

pitch aperiodicity (increases). However, some uncertainty remains about the contextual 

dependence of these features and the robustness of automatic extraction. Based on our own 

analysis, we incorporate three features into our final model. The final knowledge-inspired 

features that we incorporate are median pitch, median vocal intensity, and HF500. Median is 

used for its resilience to outliers. It is important to note that all features are extracted only on 

voiced frames (determined by Praat). HF500 is more specifically computed as the ratio of 

amount of energy above 500 Hz to the amount of energy between 80 and 500 Hz, removing 

low-frequency noise. Pitch, vocal intensity, and jitter are extracted using Praat with a 25 ms 

window and 10 ms shift. Speaking rate is calculated using manual annotations of word 

boundaries, as well as with an automatic energy-based method which depends on sensitive 

thresholds [36].

2.3 Rule-Based Arousal Rating Framework

Typically, model parameters are learned through supervised approaches that incorporate sets 

of labeled data. When training with high-dimensional feature vectors but hoping for cross-
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corpora robustness, overfitting to emotional contexts, phonetic structure, and speaker 

characteristics of a training database is a genuine concern. Researchers have trained on 

multiple corpora in an effort to model multiple contexts [9], [10], [24]. We approach the 

problem from a different angle based on the consistent predictability of certain acoustic 

correlates of arousal in relation to a reference point. Given a baseline for a speaker, we fuse 

multiple ratings from these diverse knowledge-inspired features to produce a robust rating of 

vocal arousal in the range [−1, 1]. This summative, adaptive (the fusion framework is 

adaptive) technique may have similarities to human perceptual processes—i.e., sensory 

integration, even within a single mode, has been shown to be linear with dynamic weights 

assigned according to cue reliability [37].

Our framework (depicted in Fig. 1) begins by extracting select knowledge-inspired features 

from the acoustic waveform. Baseline (neutral) behavior of each feature is modeled per 

speaker. Arousal scores are generated for each feature based on expected trend with arousal 

and the baseline model. A final arousal rating is computed through weighted summation of 

single feature scores. The arousal rating framework is further detailed in the remainder of 

this section.

2.3.1 Rule-Based Decisions—One approach to creating an unsupervised classification 

system is the inclusion of pre-defined rules. We pre-define the direction of the relationship 

between changes in the knowledge-inspired features and changes in vocal arousal (Table 2). 

In particular, we adopted the rules that increases (decreases) in pitch, intensity, and HF500 

are indicative of increases (decreases) in vocal arousal. Having set these rules, the system 

still needs to understand if a certain feature value represents an increase or decrease in 

arousal, and thus must have a model of a speaker’s baseline. Additionally, a fusion strategy 

should be incorporated to combine potentially conflicting scores from the individual 

features.

2.3.2 Speaker Baseline Modeling—Raw feature values are rarely informative without a 

reference; often the variability between speakers is larger than variability within speakers. 

The proposed framework depends on a baseline to assess deviations in feature values, and 

thus deviations in vocal arousal. Our neutral (baseline) model is simply a vector containing 

feature values from all neutral (baseline) tokens. When making decisions per utterance, we 

assign the median feature value of all the voiced frames within an utterance as the 

utterance’s feature value. If providing ratings at every voiced frame in an audio file, all such 

frames are used for baseline modeling. Since each feature will have a different baseline, a 

separate model is created for each feature. This baseline model is represented as a 

probability density function (pdf) in Fig. 2. Speaker normalization is expected to account for 

corpus channel variability (as shown by Schuller et al. (2010) [10]).

In cases where labeled neutral data is not available, all the data for a particular speaker may 

be used in the baseline model. The effect of the type and amount of baseline data is 

investigated in Section 3.3. The drawback of not having labeled neutral data is that arousal 

rating values should become more relative. In particular, a negative rating may no longer 

suggest that the arousal is negative, only that it is negative in comparison to the baseline 

data.
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2.3.3 Arousal Scoring and Fusion—Having chosen our set of three features and 

established the need for a baseline model, we will detail our generally-applicable framework 

for scoring and fusion. We first acquire neutral (baseline) models Ni for each feature type i∈

{1, 2, 3} as described in Section 2.3.2. Then, feature value xi,j of utterance j, is given a 

score, pi,j, with the corresponding neutral model, Ni, by

where E[xi,j > Ni] is the percentage of neutral model (Ni) values for which xi,j is larger. The 

score is bounded in the range [−1, 1]. If the baseline model was given neutral labels, the 

scores may be interpreted such that positive (negative) scores indicate positive (negative) 

arousal, with magnitude being associated with confidence. The framework is simple 

mathematically, but has the advantage of being very interpretable. An example is shown in 

Figs. 2 and 3.

In some databases, one of these features may be corrupted, as is the case in the emoDB 

corpus (Section 2.1.1). A smart fusion strategy will be able to ignore that feature; however, 

we cannot use any arousal labels in this fusion strategy in order to make this framework be 

available for many applications. In order to combine the scores from each feature into a 

single arousal rating, we employ a technique which requires no arousal labels (inspired by 

Grimm et al. (2005) [28]). The weights for fusion are calculated perspeaker as the 

Spearman’s rank-correlation coefficient between each score vector pi and the score mean 

vector pμ, where the vectors are composed of scores for all of a speaker’s utterances. 

Weights are then normalized to have a combined magnitude of 1.

2.4 Supervised Arousal Classification Baseline

In order to compare our result to a more exact baseline, we emulate the state-of-the-art 

approach of using openSMILE features [38] with linear SVM. This approach sets a 

formidable baseline for many Interspeech Challenges (e.g., [39], [40], [41]). We used a 

configuration file from the 2011 Inter-speech Challenge which extracted 4,368 features that 

cover the spectrum of commonly utilized spectral and prosodic descriptors. Linear SVM 

models (L2-loss and L2-regularization) were built using LIBLINEAR [42]. Separate models 

were trained on each corpus individually, and then tested on the remaining corpora; a 

majority-vote decision was made for each test corpus (based on the other three corpora). The 

cost parameter was optimized for each training database in the set 10[−4,−3,−2,−1,0,1].

Our proposed framework generally uses all neutral data as a baseline for each speaker. We 

employ three normalization strategies for the supervised approach: no normalization, 

neutral-data normalization, and all-data normalization. Speaker z-normalization (mean and 

variance normalization) is used because it has proven successful in similar tasks [10], [43]. 

In order to control for channel (e.g., mouth-to-mic distance) and speaker (e.g., vocal 

morphology) properties, normalization is necessary; thus, no normalization does not account 

for these differences. With neutral-data normalization, baseline parameters for each speaker 

are trained using only neutral data for that speaker (as is the case in our proposed model). 
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All-data normalization trains baseline parameters on all of a speaker’s data. This method 

benefits from increased data for baseline modeling and can handle unlabeled data. However, 

all-data normalization is influenced by the distribution of arousal for each speaker; in 

particular, a decline in classification accuracy is expected if training on data with a majority 

of high-arousal instances and testing on data with a majority of low-arousal instances.

3 Experimental Setup and Results

Our primary goal is to create and validate a versatile arousal rating tool that measures 

expressed arousal. Since a ground-truth measure of internal arousal is not available, we 

correlate with and predict human annotations of perceived vocal arousal. In the first 

experiment, relations between knowledge-inspired features and arousal labels are assessed, 

leading to the selection of three features for inclusion in our final model. We consider more 

features than the three chosen for our initial work [27]. Second, we compare our selected 

features and framework to state-of-the-art supervised approaches for cross-corpora binary 

(high/low) arousal recognition [38]. Third, we examine the amount of neutral data required 

in terms of system accuracy, as well as an approach to arousal rating without any neutral-

labeled data. In our final experiment, we demonstrate a modified approach for continuous 

arousal rating with temporal smoothing in the CreativeIT database.

3.1 Acoustic Feature Comparison

Arousal scores are generated for various knowledge-inspired features in order to select those 

that are the most robust for our framework within these datasets. We consider features from 

the following categories: pitch, volume, voice quality, and speaking rate. The correlations 

between the arousal score from each feature (before any fusion) and the manually-labeled 

arousal are displayed in Table 3. In these experiments, we include the scores for the neutral-

designated data in the correlations, which reduces final correlations since neutral data will 

uniformly receive scores in the range [−1, 1] per speaker. This section considers only 

utterance-level decisions.

Four utterance-level functionals of log-pitch are considered: median, inter-quartile range 

(IQR), range, and floor. Median and IQR are robust analogues of mean and standard 

deviation. Robust floor (10 percent quantile) and robust range—the difference between the 

robust ceiling (90 percent quantile) and robust floor (10 percent quantile) in an utterance—

are included because they were informative in many psychological studies. The results 

clearly indicate that modeling median of log-pitch produces a strong correlate of arousal.

Results for three volume features are reported: median and IQR of vocal intensity (short-

time energy), and median loudness.1 Loudness computation is motivated by the perceptual 

work of Zwicker et al. (1991) [45]. Vocal intensity is computed through Praat. IQR of vocal 

intensity produces the lowest correlations. Median vocal intensity and loudness deliver 

comparable correlations, except for the emoDB corpus; the median-vocal-intensity score has 

an unexpected medium-strength negative correlation, while loudness produces a very small 

1Loudness is computed with software described in Fernandez (2004) [44], which can be downloaded at <http://affect.media.mit.edu/
software.php>.
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positive correlation as expected. However, the feature weighting framework compensates 

for this issue by assigning near-zero weight to vocal intensity (Section 3.2). Since loudness 

computation has much higher computational cost, median of vocal intensity is selected from 

this group for the final arousal rating framework.

Four voice quality features are experimented with: HF500, jitter, HNR (harmonics-to-noise 

ratio), and shimmer. HF500 is the ratio of high-frequency to low-frequency energy with a 

500 Hz cutoff. Jitter is a short-term pitch aperiodicity measure, while HNR is a measure of 

acoustic periodicity; they are typically negatively correlated. Shimmer is a measure of short-

term amplitude perturbation. Jitter, HNR, and shimmer are calculated in Praat. HF500 is 

calculated from the long-term average spectrum using a script written in Matlab. Although 

jitter was indicated to be an acoustic correlate of arousal [25], the only consistent correlate 

of arousal is HF500.

Speaking rate is a common correlate of vocal arousal [25]; but it is dependent upon many 

potentially confounding factors. We consider two methods of obtaining speaking rate. With 

both of the methods we use the median syllabic speaking rate (syl/s) of all syllables in the 

utterance as the measure of SR for an utterance. The first method, called true SR, uses 

syllable boundaries computed from phonetic forced-alignment of speech to text (available 

only for EMA and IEMOCAP). The second method, called est. SR, estimates the syllable 

boundaries using a lexically-independent, energy-based syllable-nuclei detection method 

[36]. The true and estimated SR have medium correlation in the EMA corpus ρS = 0.62 (p < 

1e-10) and low correlation in the IEMOCAP corpus ρS = 0.18 (p < 1e-10). The results 

suggest that neither true or estimated speaking rate are consistently informative of vocal 

arousal for these corpora and our modeling approach.

Ideally, the final feature set will not only show strong predictive potential, but also the 

features should be diverse enough to profit from fusion. For instance, the features should not 

be affected by channel and speaker variations or distortions in the same way. Accordingly, 

we choose no more than a single feature from each category. The final feature set is 

comprised of median log-pitch, HF500, and median vocal intensity. Spearman’s rank-

correlation coefficients between the selected features are computed per speaker in each 

database, and the median values are shown in Table 4; also, the median p-values for each 

database are reported. The correlations between the selected features are generally only 

medium-strength (0.4–0.7), which is comparable to the correlation strength between these 

feature’s scores and the arousal labels. All of these correlations are significant at the p < 10e 

– 4 level by the binomial proportion test.2 If the correlations between features were stronger, 

diversity would be lower and we would expect only minor benefits from fusion. Further, we 

observe a case where one feature is corrupted by channel properties, but the others are 

robust to those variations. In emoDB, the vocal intensity is corrupted by varying mouth-to-

mic distance, having a negative correlation with the other features; yet pitch and HF500 are 

2UAR is the average of the recalls for each class. When the classes are unbalanced, there is less confidence in the minority class. To 
account for this issue, we modify the binomial proportion test by setting the sample size, N, to be twice the size of the minority class. 
This produces a p-value which is more conservative.
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still positively correlated with each other, and their produced scores are positively correlated 

with labeled arousal.

3.2 Utterance-Level Ratings

In this section we present results of our system for rating vocal arousal per-utterance. It is 

assumed that each utterance has its own arousal label and that a set of neutral-labeled data is 

available; in Section 3.3 we will consider rating with no neutral-labeled data per speaker. In 

order to compare our approach (which produces a continuous rating) with a state-of-the-art 

approach (which produces a discrete rating), we must convert our rating to a binary decision. 

We select the intuitive threshold of 0 to convert our bounded rating into high and low 

arousal decisions. Unweighted average recalls (UAR) are reported for our model and the 

baseline approach. Results were also generated separately for the improvised and scripted 

portions of the IEMOCAP database, but only marginal differences were found.

Our arousal rating framework results in an accurate measure of vocal arousal on the four 

examined databases (Table 5). Spearman’s rank-correlation coefficient between the 

proposed arousal rating and arousal labels is 0.62 for IEMOCAP, 0.74 for emoDB, and 0.71 

for the other two databases when performing weighted fusion (with weights assigned as 

described in Section 2.3.3). Binary classification UARs with weighted fusion are 73–84 

percent, well above chance (50 percent).

Each individual feature performs best in at least one database, producing a subrating that is 

most correlated with arousal labels. Also, fusion always produces a higher correlation than 

does any individual feature, except in the case of emoDB where one feature was corrupted.

Weighted fusion meets or exceeds performance of unweighted fusion (averaging) for all 

four databases. The increase with weighted fusion is most significant in the emoDB 

database. The intensity subrating has a medium negative correlation with arousal labels, 

because intensity is corrupted in the emoDB database by varying mouth-to-mic distance. 

Still, the weighted fusion framework assigns a very minor weight (−0.09) to intensity since 

it is not correlated with the average of the three features. This leads to an improvement from 

ρS = 0.62 (unweighted fusion) to ρS = 0.74.

The proposed vocal arousal rating compares very competitively with the state-of-the-art 

supervised approach (Table 6). Specifically, our proposed model is always better than the 

state-of-the-art no-normalization method (p < 10e – 4). Compared to the neutral-

normalization method–which closely parallels our approach–our method is better in two 

cases (IEMOCAP and VAM; p < 10e – 4) and does not perform significantly differently in 

the other two (p > = 0.05). Furthermore, our model is competitive with the all-data 

normalization supervised approach; producing similar UAR in one case (IEMOCAP, p > = 

0.05), higher UAR in one case (VAM, p < 10e – 4), and lower UAR in two cases (EMA, p < 

0.05; emoDB, p < 10e – 4). For the emoDB database, the supervised approach outperforms 

our model by 6 percent UAR. This large difference may be dependent on assumptions of 

arousal-label distribution between databases; note that the neutral-normalization model 

produces similar performance (82 percent UAR, p > = 0.05) to our model and that the no-

normalization model is at chance performance (50 percent). Our model outperforms the 

Bone et al. Page 12

IEEE Trans Affect Comput. Author manuscript; available in PMC 2015 February 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



supervised approach for the VAM data (p < 0.05), the only natural emotional corpora we 

evaluate. The accurate vocal arousal decisions produced by our model indicate that these 

three features and our unsupervised fusion scheme can be as robust as a highly-tuned 

supervised classification approach that is prone to overfitting.

For further comparison, the UARs reported for this binary classification task are competitive 

with those presented by Schuller et al. (2010) [10] for emoDB; our result of 84 percent is 

approximately equal to their 75 percent quantile result of 82 percent UAR (Fig. 2b). In that 

study, different groupings of corpora were used for supervised training. Our model 

incorporates only three features compared to the 4,386 of the supervised approach. Thus, our 

model maintains interpretability while producing high UAR, and it has the further benefit of 

being a validated measure of scale-continuous arousal (Table 3).

The distribution of assigned arousal ratings for each emotional label in emoDB is displayed 

in Fig. 4 for both neutral and all-data (or global) speaker baseline models. The histograms 

clearly illustrate the differences between (i) neutral and (ii) all-data normalizations. (i) For 

neutral baseline modeling, feature values of each categorical emotion are compared to those 

of neutral data. In this framework, the Neutral data will receive feature-level arousal scores 

that are approximately uniformly distributed perspeaker, but in after fusion will tend to 

cluster around 0. For the emotions Anger, Happy, Fear, and Disgust (listed in decreasing 

order of arousal by visual inspection), there is a large concentration of arousal ratings near 

+1; this implies that the relevant feature values are often greater than the vast majority of 

observed Neutral features. Interestingly, Disgust was assigned a label of negative arousal (as 

in [10]), but it appears to evoke arousal that is higher than neutral, demonstrating the utility 

of this tool for unsupervised discovery. Boredom appears to be similar to Neutral, but 

slightly more negative. Finally, Sadness is the only emotion to receive primarily negative 

arousal ratings, indicating that the associated feature values often fall below the median 

Neutral features. The primary source of error (84 percent UAR) for a threshold of 0 would 

be from Disgust since it is primarily rated as high arousal.

(ii) For all-data baseline modeling, the same ordering of emotions by arousal rating is 

observed; in fact, the emotions seem to cluster by arousal rating. This improvement in 

ranking (ρS = 0.81 compared to ρS = 0.74) is likely due to having a wider variety of data, 

particular for the avoiding ceiling effects seen with neutral baseline modeling. We usually 

do not expect the all-data baseline model to classify binary arousal better than the neutral 

baseline, since neutral will shift its center depending on the distribution of emotions in the 

data. The observed shift towards low arousal brought the majority of Disgust instances 

below 0 arousal, which improved UAR to 92 percent. Again, our rating would suggest that 

Disgust in this data is actually a high arousal emotion; if it were labeled as such, the all-data 

model would perform much worse than the neutral model.

The relationship between arousal ratings and arousal labels in the VAM database is shown 

in Fig. 5; the prominent diagonal reveals the accuracy of the scale-continuous vocal arousal 

rating.
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3.3 Effect of Baseline Data

It is important to test the performance of our system with varying amounts of neutral 

baseline data in order to understand how much is necessary to achieve a desired 

performance. It is reasonable to assume that a small amount of annotated neutral data will be 

available in many situations. Even so, the performance of the method without explicitly-

labeled neutral data is investigated. The results of varying the amount and type of baseline 

data are displayed in Table 7. Performance metrics are Spearman’s rank-correlation 

coefficient (ρS), a relative measure, and the mean-absolute difference (mad), an absolute 

measure. In each data set, arousal labels have been scaled to the range [−1, 1]. As a 

reminder, emoDB and EMA have discrete labels, so only scores of {−1, 0, 1} are possible; 

IEMOCAP and VAM have continuous labels.

With every database, more neutral data leads to increased correlations and decreased 

absolute error. However, significant correlations with labeled arousal are still achieved using 

as baseline only (on average): a single neutral instance in the emoDB and VAM databases; 

seven instances in the EMA database; and 11 instances in the IEMOCAP databases.

Surprisingly, for all-data normalization compared to all-neutral normalization, absolute error 

decreased in the two continuous-label arousal databases (VAM and IEMOCAP). This 

suggests that understanding the total range of data was more beneficial in assigning accurate 

arousal ratings than knowing where the center (neutral) was. Further, the relative 

performance using all-data baseline modeling is comparable to all-neutral baseline modeling 

across databases. This implies that the system can effectively rank the vocal arousal in a set 

of observed data from a single speaker, even without any labeling of that data; this is 

understandable since the three features which the system are built upon all correlate well 

with vocal arousal across databases and contexts. Overall, the model apparently needs very 

little labeled data to achieve impressive relative performance, yet high absolute accuracy in 

rating arousal is often not achieved.

3.4 Temporally-Continuous Arousal Rating

In this section the proposed vocal arousal rating model is extended to temporally-continuous 

arousal rating (one with a constant sampling rate). Our previous experiments only 

considered the case where the boundaries for an utterance were provided and a single label 

of arousal was given for each utterance. The primary benefit of this temporally-continuous 

rating is that it does not require any utterance boundaries. It provides a score for all voiced 

frames, and it assumes one speaker per recording.

Our approach to temporally-continuous arousal rating uses the same framework as in static 

ratings, but with minor adaptations. A decision is made every 10 ms using a sliding-window 

approach. Pitch, intensity, and HF500 are extracted with a 25 ms sliding-window; all 

unvoiced frames are assigned as a missing value (NaN in Matlab). Baseline models are 

created from all of a speaker’s voiced frames within a single session (global baseline) to 

account for varied acoustic conditions between sessions. Since we are performing global 

normalization rather than neutral normalization, we may expect that the rating will correlate 

with the arousal labels, but that the absolute value of that rating will have less meaning. In 
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short, we cannot say that a rating of 0.25 is necessarily positive arousal on average. Once the 

baseline model is available, scoring can be accomplished. Before scoring, each feature 

stream is smoothed with a 1-second (100-sample) median filter, ignoring missing values. 

Scoring and fusion are then completed as in the static scenario. As a final modification, the 

fused arousal rating is further smoothed with a 2-second (200-sample) median filter. 

Smoothing produced better, less-variable, ratings.

A result of this frame-based approach is shown in Fig. 6. Utterance-level decisions are 

performed in the same session and displayed in Fig. 7. (Utterance-level arousal labels were 

computed by taking the median of the arousal labels assigned to an utterance.) The frame-

based ratings are highly variable, even within an utterance. The utterance-level ratings 

follow a similar course to the frame-based ratings, but may benefit from averaging 

information from multiple frames.

The performance of continuous-arousal rating is evaluated in terms of the Spearman’s rank-

correlation with continuous arousal tracking as well as mean-absolute-difference (mad). The 

arousal labeling was conducted by observing a video. A 2-second delay in annotation was 

assumed based on empirical evidence—this aligns with previously reported results on 

another annotated emotional database [46]. The frame-based approach produced correlations 

in the range [−0.62, 0.89] as depicted in Fig. 8. It is clear that in some cases (especially near 

utterances with few voiced frames) the ratings have weak coupling to arousal labels. 

However, the ratings in the frame-based approach have a median correlation of 0.49, which 

is significantly greater than 0 by the Wilcoxon signed-rank test (p < 1e – 13). Thus, the 

relative relationship between the vocal arousal rating and arousal labels is significant. 

However, as expected, the absolute values differ greatly. Specifically, the median session-

level mean-absolute-difference between the automatic rating and the arousal labels is 0.44, 

which is much larger than the median session-level mean-subtracted-amplitude of the 

arousal labels (0.15). This implies that the error in predicting the arousal labels is larger than 

the variability of the labels themselves.

Static, utterance-level decisions are useful for comparison. The static method with global 

normalization produces median correlations in the range [−0.27, 1] with a median of 0.50 

(statistically significant at p < 1e-15). Thus, the two approaches produce comparable results 

in terms of relative arousal rating. The utterance-level approach is also a poor descriptor for 

absolute arousal, as expected from the global normalization. The median session-level 

mean-absolute-difference between rated and labeled arousal is 0.30, while the median 

session-level mean-subtracted-amplitude of labeled arousal is 0.22.

4 Discussion

An unsupervised (rule-based) approach to arousal detection is proposed and was tested 

across multiple corpora. The algorithm only requires baseline data, preferably from a neutral 

portion of speech. The algorithm assumes that changes in features relate to predictable 

changes in arousal.

Bone et al. Page 15

IEEE Trans Affect Comput. Author manuscript; available in PMC 2015 February 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



4.1 Utterance-Level Vocal Arousal Ratings

The first step in re-designing our initial system proposed in Bone et al. (2012) [27] was to 

consider the addition of alternative features in Section 3.1. For instance, loudness was 

hypothesized as potentially more robust than intensity. While loudness did create higher 

correlations than intensity for emoDB, which has known energy issues, the two are 

approximately equal in performance on the other databases. Since loudness takes much 

longer to compute, and since our feature-score fusion framework essentially excluded 

intensity in emoDB, we selected intensity. We also chose other features suspected to contain 

orthogonal information: a measure of pitch and a measure of voice quality. Median pitch is 

clearly the highest performing pitch feature, as is HF500 for voice quality. Speaking rate 

was also investigated both from forced-alignment and from an intensity-based syllabic 

method. However, speaking rate does not produce consistent performance as hypothesized 

from relevant literature. We expect this is due to factors such as speaker idiosyncrasies in 

expression of emotion.

The algorithm, which automatically fuses the three chosen features, was applied to the 

various databases in Section 3.2. Medium-to-high Spearman’s rank-correlation coefficients 

were observed for four emotional databases (IEMOCAP, emoDB, EMA, and VAM). Two 

important observations were made. First, each feature has the highest individual correlation 

with vocal arousal in at least one database; this suggests that a single feature is not optimal. 

Second, fusion improves correlation in all cases except emoDB; fortunately our fusion 

framework is successful in diminishing the effect of the corrupted vocal intensity feature. 

Thus, the utterance-level arousal ratings appear accurate and robust.

We further tested performance by comparing our proposed rating to a start-of-the-art 

supervised affect recognition method (openSMILE with linear SVM). The results support 

the use of this simple arousal rating framework for binary arousal classification. Our method 

achieves between 73 and 84 percent UAR. The only major differences between the 

supervised results and the proposed model exist for the emoDB and VAM databases. The 

supervised technique performed much better on emoDB, but emoDB is often regarded as a 

rather easy database for classification. In VAM, the only natural affective database that is 

examined, our method outperforms the supervised method. These results indicate that the 

proposed arousal rating is robust. Our method has the additional advantage of providing a 

verified scale-continuous measure, which is more precise than the binary measure by 

common state-of-the-art approaches. On another note, further support for incorporating 

baseline information is observed from the results of supervised classification with and 

without normalization.

4.2 Effect of Baseline Data

It is shown that the vocal arousal rating model does not always require large amounts of 

neutral data (Section 3.3). A generally observed trend is that more neutral data leads to 

higher correlations and lower mean-absolute errors, although the differences were rather 

small. Even with as little as 10 percent of the original neutral data (sometimes as low as 1 

utterance per speaker) the arousal rating was still fairly successful. Furthermore, neutral data 

is not necessarily essential; normalization can be performed using all available data (referred 

Bone et al. Page 16

IEEE Trans Affect Comput. Author manuscript; available in PMC 2015 February 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



to as global normalization). Global normalization leads to better performance in the emoDB 

database, but lower in the VAM. Overall, the results suggest very little labeled data is 

needed and potentially a small amount of unlabeled data will be sufficient—this will be 

discussed further in Section 4.4.

4.3 Temporally-Continuous Ratings

An extension of this method is proposed for rating the vocal arousal of data which does not 

have any utterance boundaries marked (Section 3.4). It is assumed that all data comes from 

the same speaker. Raw data from lapel microphones may fit this set of constraints.

The arousal rating using the frame-based approach with multiple smoothing criteria has 

medium correlation (ρS = 0.49) with manual annotations in the CreativeIT database. For 

comparison, the utterance-boundaries can also be used to produce the utterance-level ratings 

as before; this produced a correlation of (ρS = 0.50), which is very similar to the frame-based 

result (although the mean-absolute error was lower for the utterance-level approach). Thus, 

continuous vocal arousal rating is achievable in multiple ways using the proposed 

framework.

4.4 Guidelines for Application

The arousal rating framework described in this article is intended for interdisciplinary use. 

Researchers can obtain the vocal arousal rating software in Matlab format from http://

sail.usc.edu/sail_tools.php.

Several guidelines for use are suggested:

Speech data: First, each speaker’s data is assumed to have come from only a single speaker 

and from identical acoustic settings. Praat uses a Viterbi decoding scheme for pitch 

extraction which assumes that only a single speaker’s voice is processed. Second, no 

changes in environment or recording parameters should occur. If incorporating data from the 

same speaker over multiple sessions, it is suggested that each session be treated separately–

in the software this can be accomplished by creating separate speaker IDs.

Baseline data: Each speaker requires some amount of baseline data. The data should be 

from a neutral-labeled portion of speech if possible. This is because global normalization is 

less well-motivated and needs further experimentation to be better understood.

Interpretation: This measure of vocal arousal should most often be treated as a relative 

measure, not an absolute one. A potential application would be to model the dynamics of 

vocal arousal across a session jointly with another temporal sequence (i.e., autonomic 

arousal or a tagged event). While this measure produced state-of-the-art performance in 

binary arousal detection across corpora, it is important to point out that this method will 

produce different absolute numbers for vocal arousal depending on the baseline data. For 

example, high arousal data used as baseline will lead to arousal ratings that must be 

interpreted differently than with neutral data as baseline. However, shifts in the arousal 
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baseline are not expected to have a great effect on the relative relevance of the measure 

(such as with correlation).

5 Conclusion

A simple measure of vocal arousal utilizing only three features was proposed and validated 

on multiple affective databases. The measure is designed to fill a void between demands of 

behavioral studies and the lack of simple, robust measures available from the engineering 

community. The framework assumes that some neutral baseline data is available; moderate 

robustness to this assumption is demonstrated in the performance of global speaker-

normalization.

The proposed framework can be applied to other tasks as well, assuming there are robust 

correlates of the target dimension. These descriptors are currently lacking for valence [47]. 

Empirical evidence suggests valence recognition is a more difficult task (e.g., [9], [10]), and 

some researchers think valence is dependent on voice quality [35], context, or other 

communicative modalities.

In the future, this arousal rating will be applied to other Behavioral Signal Processing (BSP) 

scenarios as a dynamic measure of arousal, including in domains such as couple therapy [48] 

and autism [49], [50], [51]. In particular, it will be used to model the temporal evolution of 

affect between interlocutors.
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Fig. 1. 
Arousal rating flow diagram. Utterance j is first transformed into three feature streams. Each 

feature produces an arousal score based on a baseline model trained for each individual. 

Lastly, the scores are combined into a final arousal rating, pj.
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Fig. 2. 
Probability density functions of log-pitch for one speaker from the EMA database. Labeled 

high arousal tends to indicate increases in pitch over neutral.
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Fig. 3. 
Arousal rating of a token with labeled low arousal having a log-pitch of 4.67. The filled-in 

portion represents the fraction of neutral samples which are lower than 4.67.
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Fig. 4. 
Histograms of emoDB arousal ratings for categorical emotions with differing speaker-

baselines.
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Fig. 5. 
Histogram of VAM arousal ratings. ρS = 0.71 (p < 1e – 100). Lighter color indicates higher 

occurence.
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Fig. 6. 
Frame-based temporally-continuous arousal rating and arousal label of one CreativeIT 

recording.
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Fig. 7. 
Utterance-level (static) arousal rating and corresponding arousal label of one CreativeIT 

recording. Note: label-i is the label for the ith rater.
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Fig. 8. 
Histogram of correlations between frame-based arousal ratings and arousal labels for the 90 

CreativeIT speaker.
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TABLE 2

Chosen Rules For Arousal Rating Framework, Base on Knowledge From Juslin & Scherer (2005) [25]

Median Pitch Median HF500 Median Voc. Int.

Expected/Defined Change for Increased Arousal ↑ ↑ ↑
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TABLE 4

Median Spearman’s Correlation Coefficient between Selected Features in Utterance-Level Emotional Corpora

Feature

Corpus

IEMOCAP emoDB EMA VAM

log-pitch & HF500 0.41 0.78 0.53 0.21ns

log-pitch & vocal intns. 0.61 −0.49 0.59 0.54*

HF500 & vocal intns. 0.66 −0.69 0.78 0.30ns

Sig: ns- p >= 0.05; *- p < 0.05; else- p < 1e – 4.
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TABLE 6

Comparison of the Proposed Model to State-of-the-Art Supervised Techniques with Unweighted Average 

Recall (UAR) in Predicting High/Low Arousal

Corpus

IEMOCAP emoDB EMA VAM

prop. model 73% 84% 84% 77%

baseline neutral-norm 62% 82% 86% 65%

baseline all-norm 72% 90% 87% 72%

baseline no-norm 59% 50%ns 71% 63%

Sig: ns- p > = 0.05; else- p < 1e – 4.
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